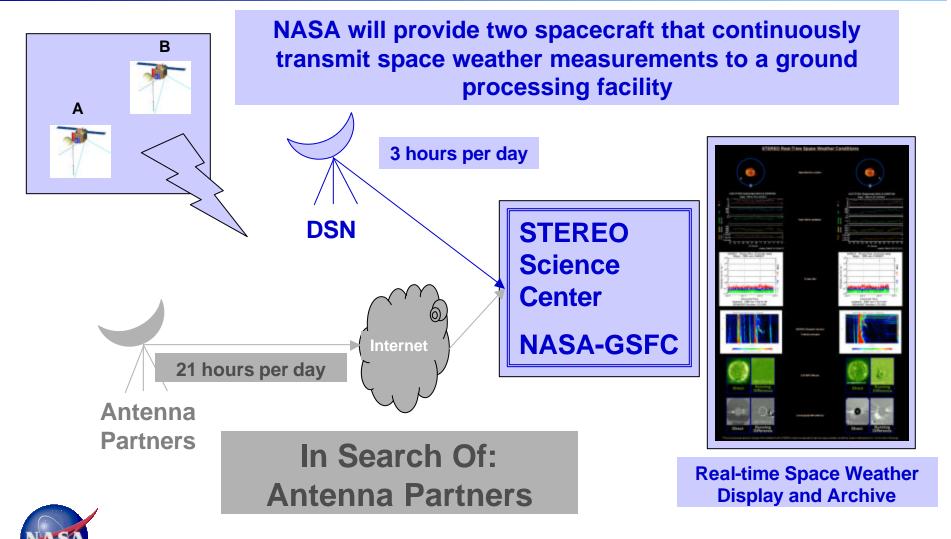


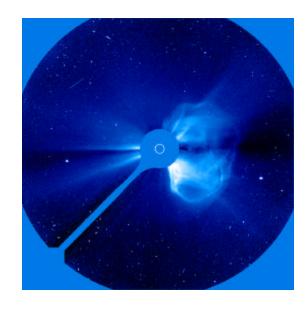
STEREO Beacon

O. C. St. Cyr

The Catholic University of America
NASA-Goddard Space Flight Center
(301) 286-2575 cstcyr@grace.nascom.nasa.gov

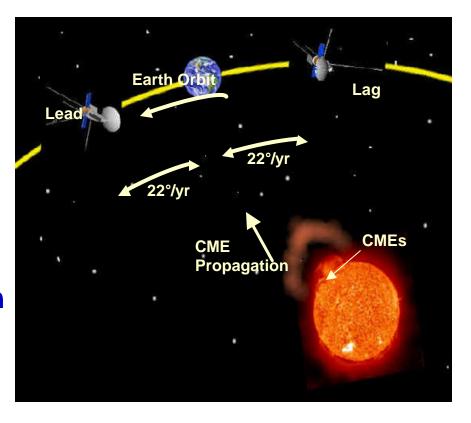

J. M. Davila

NASA-Goddard Space Flight Center (301) 286-8366 davila@stars.gsfc.nasa.gov

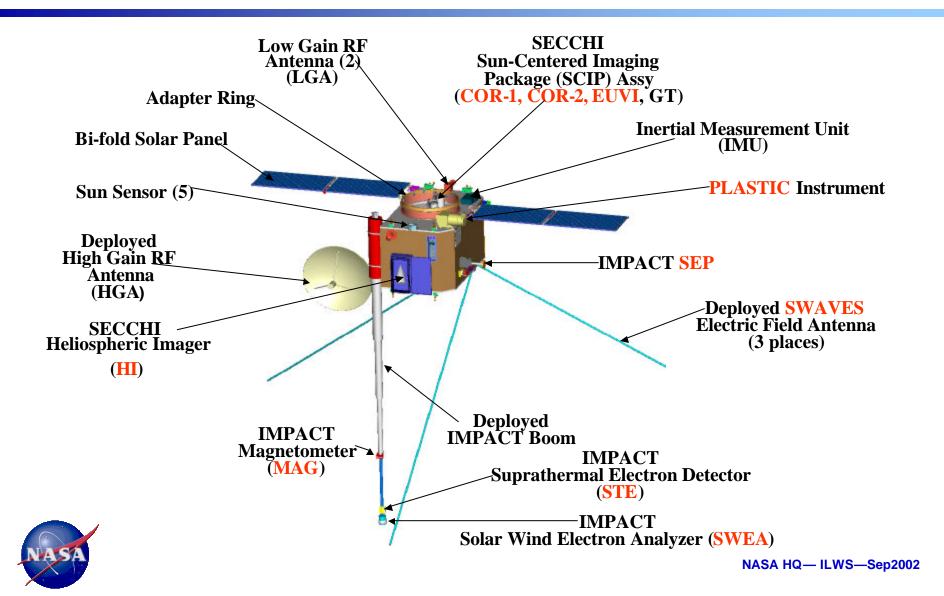

STEREO as ILWS Test-bed?

Solar-TErrestrial RElations Observatory (STEREO)

	Science Objectives	
1	Understand the causes and mechanisms of CME initiation.	
2	Characterize the propagation of CMEs through the heliosphere.	
3	Discover the mechanisms and sites of energetic particle acceleration in the low corona and the interplanetary medium.	
4	Improved determination of the structure of the ambient solar wind.	

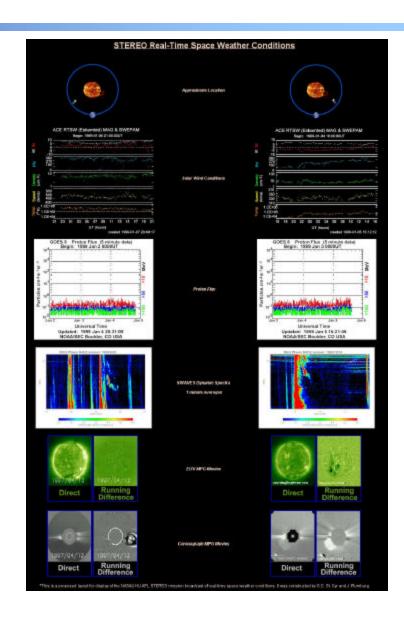

SOHO LASCO C3

STEREOLaunch November 2005


- Two Identical Spacecraft
- Heliocentric Drift Orbits at 1 AU
 - –One Ahead of Earth (STEREO-A)
 - –One Behind Earth (STEREO-B)
- •22°/year drift from Earth
- •Single Delta II 2925–10L launch vehicle with stacked configuration
- •Two Year Nominal Mission. Additional 3 Years' Expendables.

STEREO Spacecraft

STEREO Payload


Instrument Name and	Primary Measurement And	
Collaborating Institutions	Space Weather Beacon Content	
IMPACT (In situ Measurement of Particles and CME Transients)	Solar wind plasma characteristics; magnetic field parameters; solar energetic particles	
Principal Investigator: Dr. J. G. Luhmann, University of California, Berkeley, NASA-GSFC, Caltech, U. Md, U. Kiel, CESR, MPAe, JPL, ESTEC, UCLA, NOAA, LANL, et al.	One minute average solar wind electron fluxes (6 energy bands); magnetic field strength and direction; energetic electron, proton, ion (He,CNO,Fe) fluxes (multiple bands)	
PLASTIC (PLAsma and SupraThermal Ion and Composition)	Ions in the energy-per-charge range of 0.2 to 100 keV/e	
Principal Investigator: Dr. A. B. Galvin University of New Hampshire University of Bern, MPE-Garching, et al.	One minute average solar wind proton density, bulk speed, thermal speed, and direction; alpha density; representative charge (or abundance) state distributions; suprathermal rates	
SECCHI (Sun-Earth Connection Coronal and Heliospheric Investigation)	EUV imager, two coronagraphs with overlapping fields of view; two heliospheric imagers with overlapping fields of view	
Principal Investigator: Dr. R. A. Howard Naval Research Laboratory, Washington, D.C. Lockheed-Martin Solar and Astrophysics,, NASA-GSFC, University of Birmingham (U.K.), IAS, RAL, MPAe, U. Kiel, CSL, et al.	256x256 pixel highly compressed images from EUVI, COR1, COR2, HI1, HI2	
S/WAVES (STEREO/WAVES)	Interplanetary radio bursts from 40 kHz to 16 MHz	
Principal Investigator: Dr. JL. Bougeret CNRS, Observatoire de Paris, University of Minnesota, UC keley, NASA-GSFC	One minute average radio dynamic spectrum (Intensity, frequency, time)	

STEREO Space Weather Beacon

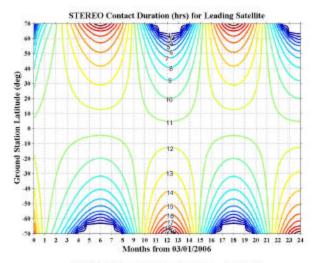
- Each STEREO spacecraft will broadcast highly compressed SWx images and in situ data continuously.
- During the daily 3-hour DSN contacts, the SWx stream will be captured, processed, and put online in near-real-time at the STEREO Science Center (SSC) located at NASA-GSFC.
- As soon as the recorder dumps are available, the SSC will fill in the previous 24 hours' SWx data as a browse archive.

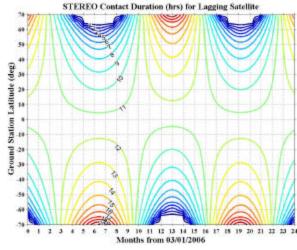
Potential Antenna Partners

- Rutherford Appleton Labs (U.K.) ACE antenna
 - Upgrade to X-band underway
 - Technical interface discussions with SSC start soon
- NOAA Space Environment Center
- U.C. Berkeley (STEREO PI team)
 - RHESSI antenna requires upgrade to X-band
- CRL (Japan)
 - Budget and technical feasibility studies are underway
- Germany (GSOC request through University of Kiel)
- Brazil
- ESOC/ESA has a network of 15m X-band antennas with significant spare capacity (estimated ~200 hours per week)

What Do Antenna Partners Need?

- X-band dish and receiver
 - 7 meter dish covers 2-year nominal mission
 - 15 meter dish covers 5-year extended mission
- Low data rate Internet connection during telemetry reception periods
 - TCP/IP socket, email, ftp, etc.
- Beacon description reprints available
- ftp://stereo.gsfc.nasa.gov/pub/cstcyr/STEREO/


Antenna Contact Duration


(latitude versus time)

For a single mid-latitude location on Earth, the two STEREO spacecraft will be seasonally out-of-phase

Example using RAL, U.K. (lat. +51°)

	STEREO-A	STEREO-B
March 2006	6 hours/day	15 hours/day
Sept 2006	15 hours/day	6 hours/day
March 2007	6 hours/day	15 hours/day

STEREO Beacon Focused Workshop

Science Organizing Committee: Co-Chairs: St.Cyr (CUA) and Luhmann (UCB)

Pizzo (NOAA SEC), Zwickl (NOAA SEC), Kunches (NOAA SEC), Goodrich (UMd),

Davila (NASA-GSFC), TBD (USAF-NOAA liaison)

Dates: Tuesday, March 4, 2003, to Thursday, March 6, 2003

Location: NOAA Space Environment Center, Boulder, CO

Attendance: 30-50 participants

Primary Goal: How can we insure that the STEREO real-time space weather beacon will be useful to NASA, NOAA SEC, the USAF, and to the community?

Challenges: Non-L-1 measurements

Moving, non-L-1 measurements

Remote sensing and radio will be available

Data coverage

Test bed for future LWS missions

